# Crane System

CAD Final Project

2022.06.20

### **Team Crane**

2016033509 김용호 2016033518 김응환 2016033618 박지원

| 1 | Introduction            |
|---|-------------------------|
|   |                         |
| 2 | Modeling                |
|   |                         |
| 3 | Kinematics & Simulation |
|   |                         |
| 4 | Conclusion              |

| 1 | Introduction            |
|---|-------------------------|
|   |                         |
| 2 | Modeling                |
|   |                         |
| 3 | Kinematics & Simulation |
|   |                         |
| 4 | Conclusion              |

## Introduction

Background







- 굴착기나 크레인 등 중장비들의 회전, 병진 운동이 CATIA로 표현하기 적합하다고 판단
  이론, 실습시간에 배운 기능을 활용하여 구현 가능

## Introduction

Roles

김용호

### **Mobile Crane**

Part Design

Kinematics

Simulation

김응환

### **Dump Truck**

Part Design

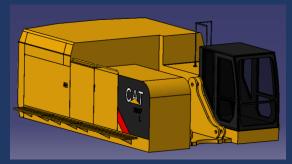
Kinematics

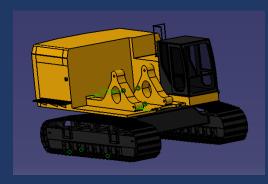
Presentation

박지원

#### **Excavator**

Part Design

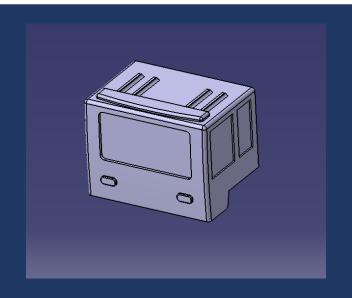

Kinematics

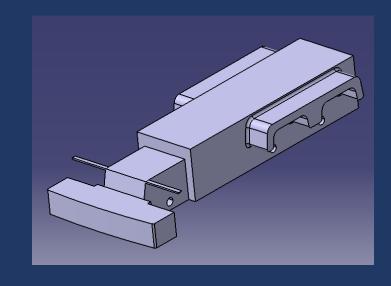

Simulation

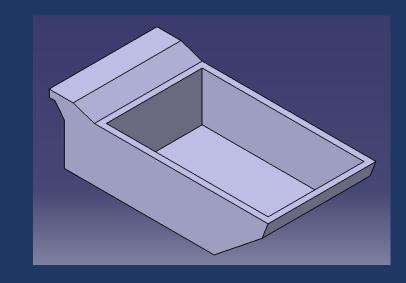
| 1 | Introduction            |
|---|-------------------------|
|   |                         |
| 2 | Modeling                |
|   |                         |
| 3 | Kinematics & Simulation |
|   |                         |
| 4 | Conclusion              |

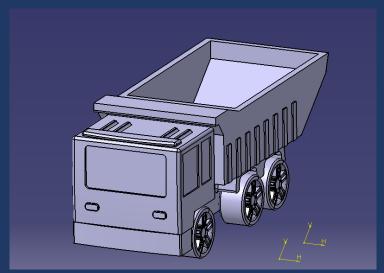
# Modeling Mobile Crane





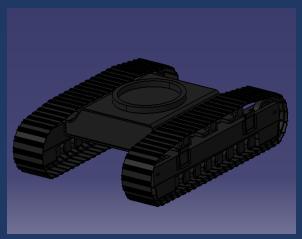



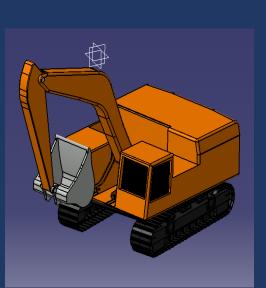



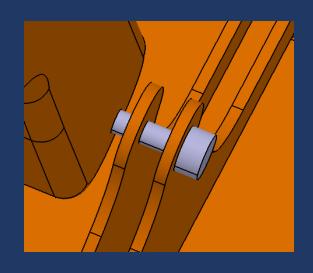


- Main body , Main Link, Sub link1,2,3,4 부분으로 나누어 모델링
- Main body부분을 아웃소싱하여 변형
- Link를 여러 개 사용하여 각도를 크게 변형하는 joint와 세밀하게 각도를 변경 할 수 있는 joint 구분
- Sketch, Pad, Pocket, Edge Fillet를 이용하여 전체적인 형상 제작
- GSD-Cylinder로 Truss 구조 제작
- Traction 아웃소싱

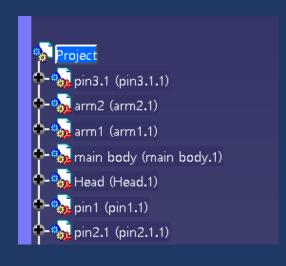
# Modeling Dump Truck







- Main body , Arm , Head 부분으로 나누어 모델링
- Sketch, Pad, Pocket, Edge Fillet을 이용하여 전체적인 형상 제작
- Assembly Design의 Coincidence, Contact, Offset Constraint를 이용하여 모든 Part 조립
- Wheel, 아웃 소싱

# Modeling Excavator



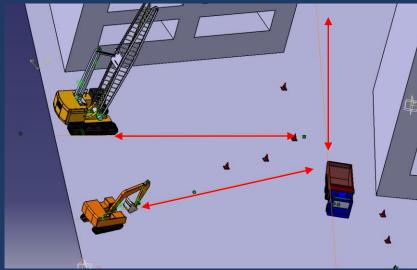


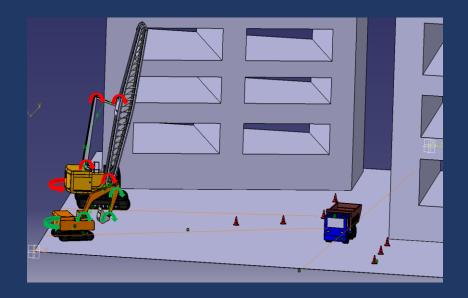




- Main body , Arm , Head 부분으로 나누어 모델링
- Sketch 와 Pad 를 기반으로 전체적인 형상 제작
- Boolean Operation 의 Remove 기능을 활용하여 비어있는 형상인 Head 제작
- 제작한 Pin으로 연결부분 구현
- 궤도 부분의 Traction body , Traction wheel 아웃소싱

| 1 | Introduction            |
|---|-------------------------|
|   |                         |
| 2 | Modeling                |
|   |                         |
| 3 | Kinematics & Simulation |
|   |                         |
| 4 | Conclusion              |


## **Kinematics**

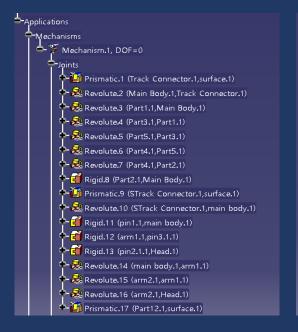







- Constraint : Coincidence, Offset, Contact활용
- Kinematics : Revolute , Rigid , Prismatic활용
- 각 Product가 활동하기 위한 Surface제작
- Product들의 이동경로를 Line 으로 설정





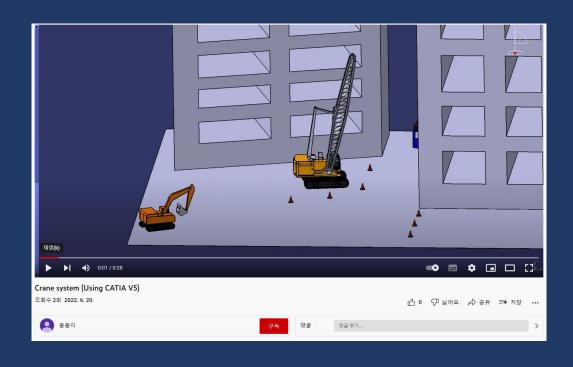

## **Kinematics**

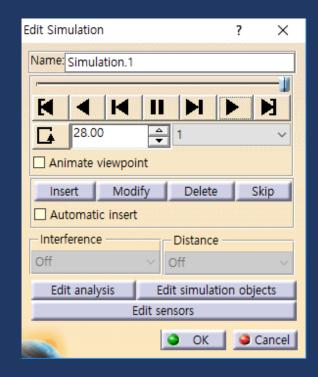
#### **Constraints**


#### Constraints − 🔑 Coincidence.17 (STrack Connector.1,surface.1) Fix.1 (surface.1) - ♥ Coincidence.18 (STrack Connector.1,surface.1) – 🔑 Coincidence.2 (Track Connector.1,surface.1) Coincidence.19 (STrack Connector.1, main body.1) - 🥰 Coincidence.3 (Track Connector.1,surface.1) – 🏂 Offset.20 (STrack Connector.1,main body.1) − 🔗 Coincidence.4 (Main Body.1,Track Connector.1) −Ø FixTogether.2(pin1.1,main body.1) - 🏂 Offset.5 (Main Body.1,Track Connector.1) −@ Fi×Together.3(arm1.1,pin3.1.1) – 🔑 Coincidence.6 (Part1.1,Main Body.1) - PixTogether.4(pin2.1.1,Head.1) - 🏂 Offset.7 (Part1.1,Main Body.1) - 🔑 Coincidence.27 (main body.1,arm1.1) − 🌮 Offset.8 (Part2.1.Main Bodv.1) - 🏂 Offset.28 (main body.1,arm1.1) Coincidence.9 (Part3.1,Part1.1) Coincidence.29 (arm2.1,arm1.1) - 50 Offset.10 (Part3.1, Part1.1) 🎒 Offset.30 (arm2.1,arm1.1) - Coincidence.11 (Part5.1,Part3.1) Coincidence.31 (arm2.1,Head.1) Offset.12 (Part5.1,Part3.1) Offset.32 (arm2.1, Head.1) — 🔑 Coincidence.13 (Part4.1,Part5.1) Coincidence.33 (Part12.1, surface.1) - 🎒 Offset.14 (Part4.1,Part5.1) Coincidence.34 (Part12.1, surface.1) - 🔑 Coincidence.15 (Part4.1,Part2.1) Offset.16 (Part4.1,Part2.1) Fix.35 (Part19.1) FixTogether.1(Part2.1,Main Body.1) Surface contact.36 (Part18.1,surface.1)

#### **Kinematics**



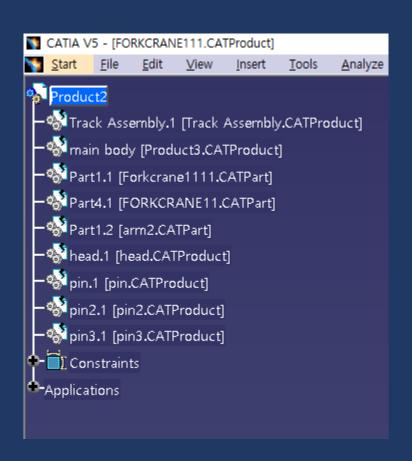




## **Simulation**

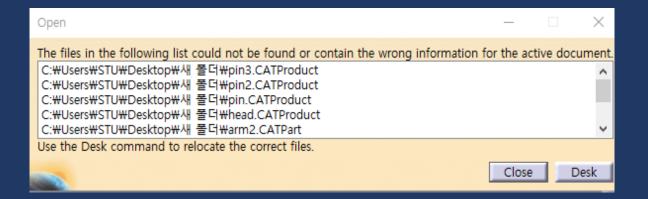


## **Simulation**

#### <u>Crane system (Using CATIA V5) - YouTubeCrane system (Using CATIA V5) - YouTube</u>







- Simulation 하나, 28장면으로 구성
- 각 Product와 Part 가 간섭받지 않는 각도, 이동 길이를 확인하여 제작

| 1 | Introduction |
|---|--------------|
|   |              |
| 2 | Modeling     |
|   |              |
| 3 | Kinematics   |
|   |              |
| 4 | Conclusion   |

## **Conclusion**



- 각자 맡은 차량을 합치는 과정에서 Part와 Product 저장 경로가 정확하지 않아 시간 소비
- Part와 Product의 저장이 체계적이지 않아 시간 소비
- 각 Part의 구체적 수치가 없어 비율을 맞추는데 어려움을 겪음
- 바퀴가 회전하는 Kinematics를 구현하지 못함
- Crane의 도르래 부분을 구현하지 못함

